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1 Outline

1. Tube doubling problem and conjecture.

2. Kakeya conjecture on tubes.

3. Besicovitch’s example in R2 and its connection with the above conjectures.

4. Lp estimates for an oscillatory integral operator.

2 Tube doubling problem

Motivation. The ball doubling problem.
Notations.

1. Ti ⊂ Rn are cylindrical tubes of radius 1 and length N .

2. 2Ti is the concentric tube of radius 2 and length 2N formed by dilating
Ti around its center by a factor of 2.

Sometimes notation 1 will be abbreviated as “a 1×N tube”.

Question 2.1. Is there a constant Cn so that for any N , for any set of 1×N
tubes Ti in Rn,

|∪i2Ti| ≤ Cn |∪iTi|?

The answer is no. Besicovitch gave a counterexample, in which,

|∪i2Ti| ≳
logN

log logN
|∪iTi| .

Such examples lead to the following conjecture1:

1I will skip this conjecture
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Conjecture 2.2 (Tube doubling conjecture). For any dimension n, for any
ϵ > 0, there is a constant Cn(ϵ), so that the following estimate holds for any N .
If Ti are tubes of radius 1 and length N , then

|∪i2Ti| ≤ Cn(ϵ)N
ϵ |∪iTi| .

3 Kakeya conjecture on tubes

Notations.

1. For a tube T ⊂ Rn as above, we write v(T ) ∈ Sn−1 for a unit vector
parallel to the axis of symmetry of T .

There are two choices of v(T ), differing by a sign. We call v(T ) the direction of
the tube T .

Definition 3.1. Suppose that Ti ⊂ Rn are tubes of radius 1 and length N . {Ti}
is a Kakeya set of tubes if {v(Ti)} is 1

N -separated and 2
N -dense in Sn−1.

1
N -separation and 2

N -dense ensure that #{Ti} ∼ Nn−1.

Question 3.2. Let {Ti} be a Kakeya set of tubes. How small can | ∪i Ti| be?

A trivial bound is #{Ti} × |Ti| ∼ Nn−1N = Nn.
The construction of Besicovitch mentioned above gives a Kakeya set of tubes

in the plane with

|∪iTi| ≲
log logN

logN
N2.

This example leads to the following conjecture.

Conjecture 3.3 (Kakeya conjecture, tube version). In any dimension n ≥ 2,
for any ϵ > 0, there is a constant Cn,ϵ so that for any N the following holds.
For any Kakeya set of tubes Ti ⊂ Rn of radius 1 and length N,

|∪iTi| ≥ Cn,ϵN
n−ϵ.

The conjecture is known for dimension 2 but is still open for all n ≥ 3.

4 Example of Besicovitch in the plane

4.1 Construction and application to the Kakeya problem

Goal. Constructing a set of N rectangles in the plane, Rj , with width 1
N and

length 1, with slopes changing evenly between 0 and 1, and with a lot of overlap.
Construction.
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Step 1. For integers 0 ≤ j ≤ N − 1, let ℓj : [0, 1] → R be a list of affine linear
functions of the form

ℓj(x) =
j

N
x+H(j).

Step 2. Let Rj be the 1
N neighbourhood of the graph of ℓj , which contains

a rectangle of width 1
N and length 1.

Step 3. Choose H(j) so that the following theorem holds true.

Theorem 4.1. Suppose that N is an integer of the form AA for some large
integer A. Let Rj be defined as above. If we choose the constants H(j) correctly,
then

|∪jRj | ≲ A−1 ≲
log logN

logN
.

The proof of Theorem 4.1 needs some careful analysis on the slope of ℓj .
More precisely, we need to consider different scales. We expand j/N in base A:

j

N
=

A∑
a=1

j(a)A−a,

where j(a) are the digits in the base A decimal expansion of j/N . The different
values of a represent different scales. We will choose H(j) so that the following
key estimate holds.

Proposition 4.2. Suppose 1 ≤ b ≤ A. If j(a) = j′(a) for 1 ≤ a ≤ b − 1, then
for all x ∈ [A−b

A , A−b+1
A ],

|ℓj(x)− ℓj′(x)| ≤ 4A−b.

Proof of Theorem 4.1. Assume Proposition 4.2 holds. Then for each 1 ≤ b ≤ A,
we focus on the

Sb := (∪jRj) ∩
([

A− b

A
,
A− b+ 1

A

]
× R

)
.

For the given choice of j(a) with 1 ≤ a ≤ b− 1, we further divide Sb into

S
j(1),...,j(b−1)
b := (∪j′Rj′) ∩

([
A− b

A
,
A− b+ 1

A

]
× R

)
,

where the union is take over all j′ satisfying j′(a) = j(a) for 1 ≤ a ≤ b− 1. We

apply Proposition 4.2 to S
j(1),...,j(b−1)
b and take the summations over all possible

values of j(1), . . . , j(b− 1) and then over b.

It remains to choose H(j). We write it as a sum of A different terms with
different orders of magnitude, more precisely, we write

H(j) =

A∑
a=1

h(a)j(a)A−a,

where h(a) ∈ [−1, 1] is a constant that we can choose later. It will be shown
that we can take h(a) := −A−a

a so that one more scale can be cancelled out.
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4.2 Application to the tube doubling problem

Recall that v(Rj) is only defined up to sign, and we can make the choice so that
the x-component of v(Rj) is negative.
Notations.

1. Define R+
j to be the translation of Rj by 10v(Rj).

Observations.

1. R+
j is contained in 100Rj .

2. R+
j are disjoint.

As a result, we get

|∪j100Rj | ≥
∣∣∪jR

+
j

∣∣ = ∑
j

|Rj | ≳
logN

log logN
|∪jRj | .

Therefore, this example can also be used as a slightly weaker counterexample
to the tube doubling problem.

5 An oscillatory integral operator

We study Lp estimates for the operator Tα defined by

Tαf := f ∗Kα =

ˆ
Rn

f(y)Kα(· − y) dy,

where

Kα(x) := (1 + |x|)−α
cos |x|.

Properties of Kα.

1. Kα is radial.

2. Kα oscillates with the radius because of the function cos |x|. More pre-
cisely, the kernel Kα has positive and negative parts, and so in the convo-
lution f ∗Kα, some cancellation can occur.

We will focus on estimates of the form ∥Tαf∥p ≲ ∥f∥p with the assumption
that 0 < α < n.

5.1 Behaviour of Tα on some spherically symmetric exam-
ples

1. f1 := χBr
, where r is small. As a result, p > n

α .

2. f2 = χBr Sign (cos |x|) where r is large. Consequently, p ≤ n
n−α .

3. 2 f3 := χBrKn−α where r is large. As a result, p ̸= n
n−α .

2I may skip this example
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5.2 Example related to the long thin tube

Now, we consider an oscillating function supported on a long thin tube.
Notations.

1. Let T be a cylinder of length L ≫ 1 and radius (1/1000)L
1
2 .

2. Let vT be a unit vector parallel to the axis of the cylinder.

3. T+ denote the cylinder we get by translating T by 10LvT .

The cylinder may point in any direction.
Example. Let

fT (x) := χT (x)e
ivT ·x.

Proposition 5.1. Fix a dimension n ≥ 2. For all L sufficiently large, the
following holds. If fT and T+ are defined as above, then for every x ∈ T+ we
have

|TαfT (x)| ≥ L
n+1
2 −α.

Corollary 5.2. If α < n+1
2 , then for every p ∈ [1,∞], as L → ∞,

∥TαfT ∥p
∥fT ∥p

→ ∞.

Proposition 5.3. If ∥Tαf∥p ≲ ∥f∥p holds for f1, f2, f3, and fT , then

n

α
< p <

n

n− α
and α ≥ n+ 1

2
.
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